If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+4k-47=0
a = 1; b = 4; c = -47;
Δ = b2-4ac
Δ = 42-4·1·(-47)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{51}}{2*1}=\frac{-4-2\sqrt{51}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{51}}{2*1}=\frac{-4+2\sqrt{51}}{2} $
| 2x/5-9=6 | | 62÷x=15.5 | | 2*x+3+5x=34 | | 4(x+1)=5x-10 | | 3(a+5)=2(3a+12) | | -3x+5-8=2x+5-5 | | 9u2-53u-6=0 | | 4(5s-12)-8(2s+8)=0 | | .12(m+3000)=4200 | | x^-6x-8=x^-2x+2x-4 | | 7-c/3=3 | | 62-x=15.5 | | 2|5x+3|–2=14 | | 35y+8=20 | | 3(2+k)=18 | | -2(g+3)=4g-3 | | (x+10)=30 | | 4(7x-10)=3x+460 | | 8u-24=16 | | -30-8m=-8m+3(5-3m) | | x/5-24=26 | | 3+x/7+16=22 | | x/4+13=38 | | 2x-28=44 | | 7p-5p=36 | | 7b-4=5b-6 | | 2{6x=3}=12x-9 | | 2^(x-1)=36 | | 142-u=212 | | 9x-4=10x-24 | | x^2+16x=298 | | 8/7+7/2z=2 |